385 research outputs found

    Critical aspect ratio for tungsten fibers in copper-nickel matrix composites

    Get PDF
    Stress-rupture and tensile tests were conducted at 816 C (1500 F) to determine the effect of matrix composition on the minimum fiber length to diameter ratio (critical aspect ratio) below which fibers in a tungsten fiber/copper-nickel alloy matrix composite could not be stressed to their ultimate load carrying capability. This study was intended to simulate some of the conditions that might be encountered with materials combinations used in high-temperature composites. The critical aspect ratio for stress-rupture was found to be greater than for short-time tension, and it increased as the time to rupture increased. The increase was relatively slight, and calculated fiber lengths for long service appear to be well within practical size limits for effective reinforcement and ease of fabrication of potential gas turbine components

    Influence of fiber aspect ratio on the stress- rupture life of discontinuous fiber composites

    Get PDF
    Critical aspect ratio and stress rupture of discontinuous fiber reinforced composite

    Surface profilometer for examining grain-boundary grooves

    Get PDF
    Surface profilometer, consisting primarily of commercially available components, measures surface topographical features accurately and precisely. It shows improvement over the interferometric technique in measurement of grain-boundary grooves formed during annealing on nickel-oxide bicrystals

    The effect of interfiber distance and temperature on the critical aspect ratio in composites

    Get PDF
    Interfiber distance and temperature effects on critical aspect ratio in composite

    Evaluation of silicon carbide fiber/titanium composites

    Get PDF
    Izod impact, tensile, and modulus of elasticity were determined for silicon carbide fiber/titanium composites to evaluate their potential usefulness as substitutes for titanium alloys or stainless steel in stiffness critical applications for aircraft turbine engines. Variations in processing conditions and matrix ductility were examined to produce composites having good impact strength in both the as-fabricated condition and after air exposure at elevated temperature. The impact strengths of composites containing 36 volume percent silicon carbide (SiC) fiber in an unalloyed (A-40) titanium matrix were found to be equal to unreinforced titanium-6 aluminum-4 vanadium alloy; the tensile strengths of the composites were marginally better than the unreinforced unalloyed (A-70) matrix at elevated temperature, though not at room temperature. At room temperature the modulus of elasticity of the composites was 48 percent higher than titanium or its alloys and 40 percent higher than that of stainless steel

    Method for producing fiber reinforced metallic composites Patent

    Get PDF
    Description of method for producing metallic composites reinforced with ceramic and refractory hard metals that are fibered in plac

    Reinforced metallic composites Patent

    Get PDF
    High strength reinforced metallic composites for applications over wide temperature rang

    Protocols for calibrating multibeam sonar

    Get PDF
    Development of protocols for calibrating multibeam sonar by means of the standard-target method is documented. Particular systems used in the development work included three that provide the water-column signals, namely the SIMRAD SM2000/90- and 200-kHz sonars and RESON SeaBat 8101 sonar, with operating frequency of 240 kHz. Two facilities were instrumented specifically for the work: a sea well at the Woods Hole Oceanographic Institution and a large, indoor freshwater tank at the University of New Hampshire. Methods for measuring the transfer characteristics of each sonar, with transducers attached, are described and illustrated with measurement results. The principal results, however, are the protocols themselves. These are elaborated for positioning the target, choosing the receiver gain function, quantifying the system stability, mapping the directionality in the plane of the receiving array and in the plane normal to the central axis, measuring the directionality of individual beams, and measuring the nearfield response. General preparations for calibrating multibeam sonars and a method for measuring the receiver response electronically are outlined. Advantages of multibeam sonar calibration and outstanding problems, such as that of validation of the performance of multibeam sonars as configured for use, are mentioned

    Moving up and down in the generic multiverse

    Full text link
    We give a brief account of the modal logic of the generic multiverse, which is a bimodal logic with operators corresponding to the relations "is a forcing extension of" and "is a ground model of". The fragment of the first relation is called the modal logic of forcing and was studied by us in earlier work. The fragment of the second relation is called the modal logic of grounds and will be studied here for the first time. In addition, we discuss which combinations of modal logics are possible for the two fragments.Comment: 10 pages. Extended abstract. Questions and commentary concerning this article can be made at http://jdh.hamkins.org/up-and-down-in-the-generic-multiverse

    Abnormal activity in the precuneus during time perception in Parkinson’s disease: An fMRI study

    Get PDF
    Background Parkinson's disease (PD) patients are deficient in time estimation. This deficit improves after dopamine (DA) treatment and it has been associated with decreased internal timekeeper speed, disruption of executive function and memory retrieval dysfunction. Methodology/Findings The aim of the present study was to explore the neurophysiologic correlates of this deficit. We performed functional magnetic resonance imaging on twelve PD patients while they were performing a time reproduction task (TRT). The TRT consisted of an encoding phase (during which visual stimuli of durations from 5s to 16.6s, varied at 8 levels were presented) and a reproduction phase (during which interval durations were reproduced by a button pressing). Patients were scanned twice, once while on their DA medication (ON condition) and once after medication withdrawal (OFF condition). Differences in Blood-Oxygenation-Level-Dependent (BOLD) signal in ON and OFF conditions were evaluated. The time course of activation in the brain areas with different BOLD signal was plotted. There were no significant differences in the behavioral results, but a trend toward overestimation of intervals ≤11.9s and underestimation of intervals ≥14.1s in the OFF condition (p<0.088). During the reproduction phase, higher activation in the precuneus was found in the ON condition (p<0.05 corrected). Time course was plotted separately for long (≥14.1s) and short (≤11.9s) intervals. Results showed that there was a significant difference only in long intervals, when activity gradually decreased in the OFF, but remained stable in the ON condition. This difference in precuneus activation was not found during random button presses in a control task. Conclusions/Significance Our results show that differences in precuneus activation during retrieval of a remembered duration may underlie some aspects of time perception deficit in PD patients. We suggest that DA medication may allow compensatory activation in the precuneus, which results in a more accurate retrieval of remembered interval duration
    corecore